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Genome-wide association studies have found thousands of correlations between genetic variants and
diseases.1 However, most of these variants are from regulatory regions of the genome which are difficult
to study experimentally due to their cell-type-specific effects.2 Accurate prediction of the transcriptional
consequences of regulatory variants is necessary to decode the genetic basis of disease and facilitate the
development of personalized treatment systems.2 In this study, we focus on unraveling the regulatory
mechanisms governing immune cells, a crucial endeavor in hereditary immunological disease research.

Chromatin accessibility provides a window into the complex process of gene regulation. Many regulatory
molecules operate by dynamically modifying chromatin accessibility. Transcription factors (TFs) bind to
specific DNA sequence motifs in regulatory regions of the genome, opening densely packed chromatin, and
enabling transcriptional machinery to access the DNA. Genome-wide chromatin accessibility can be mea-
sured by ATAC-seq, which harnesses the Tn5 enzyme’s ability to preferentially cut DNA in open chromatin
regions (OCRs).3 Deep learning has been established as a useful tool to identify regulatory motifs that are
physically bound by regulatory proteins, such as transcription factors.4 AI-TAC is a convolutional neural
network that was developed to determine the genome-wide sequence patterns that control differential chro-
matin accessibility in mouse immune cells.5 AI-TAC is trained to predict regional chromatin accessibility
(the total number of ATAC-seq Tn5 cuts per region) across 81 immune cell types from the surrounding
genomic sequence alone. While AI-TAC has shown promising results using this training strategy, recent
research has established that the base-pair resolution distribution of Tn5 cuts (the ATAC-seq “profile”) con-
tains TF “footprints” which provide additional information about the location and strength of TF binding
sites.6 Avsec et al. and Trevino et al. also demonstrated that training deep learning models (BPNet and
ChromBPNet) on base-pair resolution chromatin accessibility profiles improves discovery of TF motifs and
TF interactions.7,8 These findings prompted us to ask if learning motifs from base-pair resolution ATAC-seq
profiles could also improve prediction of regional chromatin accessibility.

Figure 1: bpAI-TAC architecture

Here, we introduce a multitask model (“bpAI-TAC”)
that predicts differential regional chromatin accessibility,
and base-pair resolution accessibility profiles across 90
different closely-related immune cell types. The body
of the model learns a representation of each base-pair
with information from surrounding bases using a convo-
lutional layer and a series of dilated convolutional layers
with residual skip connections (Figure 1). The represen-
tation learned by the body is sent to two output heads:
a “scalar head” which predicts the regional accessibility
(total number of Tn5 counts in a DNA region), and a
“profile head” which predicts the likelihood of a Tn5 cut
at each base from the base pair representation. The scalar head applies several additional convolutional
layers with max-pooling and a fully connected layer to predict the total Tn5 counts in a region from the
learned representation of the entire region.

The Tn5 enzyme has a weak but apparent preference for cutting at specific sequence patterns independent
of DNA accessibility, which we accounted for by creating a pre-trained bias model of Tn5 cuts on transcription
factor free DNA.9 For each input, the predicted Tn5 bias was added to the profile head likelihood prediction
in the bpAI-TAC model. Adding the bias is crucial to enable bpAI-TAC to learn patterns of transcription
factor binding and prevent it from learning Tn5 cutting preference patterns. The combined likelihood is
normalized with a softmax function and compared to the measured profile with cross entropy. The entire
model is trained on a composite loss function that uses the mean squared log error for the scalar head and
cross entropy for the profile head.

L = MSE(log(rpred + 1), log(robs + 1)) + λ ∗MeanCrossEntropy(ppred,pobs))

1



Where r is the regional total Tn5 counts, and p is a vector of the base-resolution profile. The means are
taken across all cell types and chromatin regions. λ controls the relative weight on the profile head prediction
error.

bpAI-TAC was trained using ATAC-seq data from 90 different mouse immune cell types collected by
the Immunological Genome Project.10 As input, we used 998 bp long sequences centered around ATAC-seq
peaks. We divided chromatin regions into training, validation, and test sets, leaving chromosomes 11, 12,
15, and 16 out for analyzing model performance. We trained models with different weights on the profile
head by increasing λ from 0 (only training on regional accessibility) to 1010 (heavily focusing on profile). We
found that models which included base resolution profiles in their loss showed superior prediction of regional
accessibility, with an optimal λ of 0.7 - 0.9. When the model was weighted too strongly towards learning
from profiles, the performance of regional chromatin accessibility prediction declined. This is similar to the
trade-off pattern found for BPNet.7

Our results suggest that base-pair resolution chromatin accessibility profiles contain additional informa-
tion that can be harvested by our new multi-task deep learning model to improve predictions of regional
chromatin accessibility. We hypothesize that the observed performance increase can be attributed to addi-
tional information about TF binding interactions derived from base resolution footprints, and therefore that
this approach will also improve our ability to extract information about the underlying biological processes
from the data. We will seek to test this hypothesis through model interpretation as a next step.
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Figure 2: bpAITAC regional accessibility prediction performance. a) The Pearson correlation between actual and
predicted regional chromatin accessibility (total number of ATAC-seq Tn5 counts in an OCR) across bpAI-TAC
trained with different different λ weights on profile learning. Each condition was tested with three different random
initializations. Black dots represent the mean correlation for each initialization. Regional chromatin accessibility
prediction performance improves when the model learns bp-resolution profiles, with the highest performing initializa-
tion found at λ = 0.7. As weight on profile learning further increases, the regional accessibility prediction decreases
demonstrating a trade off. b) A comparison of regional accessibility prediction between bpAI-TAC trained without
learning from bp-resolution profiles (λ = 0), and with learning from profiles (λ = 0.7). Each point is the Pearson
correlation between predicted and observed regional chromatin accessibility for an individual chromatin region, av-
eraged over three random initializations, and colored by density.
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Figure 3: Comparison between a predicted and measured bp-resolution ATAC-seq profile for a single chromatin region
in B.FrE.BM immune cells. Profiles were normalized to the center 250 bp of the region. b is a scatter plot of the
profiles shown in a and colored by density.
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